The hypomethylating agent Decitabine causes a paradoxical increase in 5-hydroxymethylcytosine in human leukemia cells
نویسندگان
چکیده
The USFDA approved "epigenetic drug", Decitabine, exerts its effect by hypomethylating DNA, demonstrating the pivotal role aberrant genome-wide DNA methylation patterns play in cancer ontology. Using sensitive technologies in a cellular model of Acute Myeloid Leukemia, we demonstrate that while Decitabine reduces the global levels of 5-methylcytosine (5mC), it results in paradoxical increase of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) levels. Hitherto, the only biological mechanism known to generate 5hmC, 5fC and 5caC, involving oxidation of 5mC by members of Ten-Eleven-Translocation (TET) dioxygenase family, was not observed to undergo any alteration during DAC treatment. Using a multi-compartmental model of DNA methylation, we show that partial selectivity of TET enzymes for hemi-methylated CpG dinucleotides could lead to such alterations in 5hmC content. Furthermore, we investigated the binding of TET1-catalytic domain (CD)-GFP to DNA by Fluorescent Correlation Spectroscopy in live cells and detected the gradual increase of the DNA bound fraction of TET1-CD-GFP after treatment with Decitabine. Our study provides novel insights on the therapeutic activity of DAC in the backdrop of the newly discovered derivatives of 5mC and suggests that 5hmC has the potential to serve as a biomarker for monitoring the clinical success of patients receiving DAC.
منابع مشابه
Epigenetic effects of decitabine on acute lymphoblastic and acute promyelocytic leukemia cells
Background: Decitabine (5-aza-2'-deoxycytidine, DAC) is a deoxycytidine analog currently used as an effective drug against myelodysplastic syndromes and acute myeloid leukemia. Although various studies have pointed out the epigenetic effects of this drug, its epigenetic mechanisms in different leukemic cell lines are not specified. In this lab trial study, possible epigenetic effects of decitab...
متن کاملImmunotherapy of Myelodysplastic Syndrome: You Can Run, but You Can't Hide.
The hypomethylating agent decitabine induces expression of the cancer/testis antigen NY-ESO-1 in the myeloid cells of patients with myelodysplastic syndrome (MDS). Patients with MDS treated with decitabine and an NY-ESO-1 vaccine developed NY-ESO-1-specific T-cell responses directed against their abnormal myeloid cells, raising hopes for combinatorial immunotherapy of this disease. Clin Cancer ...
متن کاملDecitabine in the treatment of myelodysplastic syndromes
Myelodysplastic syndromes (MDS) are a group of heterogeneous clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, peripheral blood cytopenias and a propensity to transform into acute myeloid leukemia. There are few treatment options available for patients with MDS. Studies into the molecular biology of MDS have demonstrated abnormal patterns of DNA methylation th...
متن کاملCase report of isochromosome 17q in acute myeloid leukemia with myelodysplasia-related changes after treatment with a hypomethylating agent.
Isochromosome 17q is a relatively common karyotypic abnormality in medulloblastoma, gastric, bladder, and breast cancers. In myeloid disorders, it is observed during disease progression and evolution to acute myeloid leukemia in Philadelphia-positive chronic myeloid leukemia. It has been reported in rare cases of myelodysplastic syndrome, with an incidence of 0.4-1.57%. Two new agents have...
متن کاملDNA Hypomethylating Drugs in Cancer Therapy.
Aberrant DNA methylation is a critically important modification in cancer cells, which, through promoter and enhancer DNA methylation changes, use this mechanism to activate oncogenes and silence of tumor-suppressor genes. Targeting DNA methylation in cancer using DNA hypomethylating drugs reprograms tumor cells to a more normal-like state by affecting multiple pathways, and also sensitizes the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015